Geographical analysis

Department of Geography & GIS

Article

Geographical analysis

Year: 2024, Volume: 13, Issue: 2, Pages: 54-62

Original Article

Causal Relationship of Occupational Health Issues: A Case Study of Solid Waste Management Workers in the South Zone of Coimbatore Corporation, Tamil Nadu, India

Received Date:18 September 2024, Accepted Date:27 December 2024

Abstract

Background: Globally, in urban areas solid wastes are the most perceptible environmental problems because of increasing population, urbanization and industrialization and consumption patterns are results of increasing amounts of solid waste. Therefore, solid waste generation creates more ecological concerns, particularly in urban areas. This leads to environmental and public health issues for the residents and solid waste management workers. Objective: To measure the causal relationship of occupational health issues of solid waste management workers working in the south zone of Coimbatore Corporation. Methodology: The information was collected through the questionnaire schedule from the 300 sanitary workers working in the south zone of Coimbatore Corporation by stratified random sampling method. These variables are vital factors in determining the occupational status of sanitary workers in this study area. The results of the Structural Equation Model (SEM) of sanitary workers' data set suit the fit indices and the proposed hypothesis causal model relationships are acceptable fit by the recommended values. Result: The structural equation model demonstrates that the variables namely behaviour of alcoholism, visiting the hospital, job satisfaction, accessibility to the workplace, health problems, public prejudice, occupational security and insufficiency of equipment are the occupational issues of sanitary workers in the study area. The scale used in this study adequately fits into the data collected and it concludes that the hypothesized thirteen assumptions model fits the collected sample data. As a result, the likelihood and statistical association of essential variables estimate, the good fit of the structural model and represent an adequate description of sanitary workers indicators support the model fit.

Keywords: Occupational Health, Solid Waste, SEM, Path Analysis

References

  1. Kaza S, Yao L, Bhada-Tata P. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. (pp. 115-140) Washington, DC. World Bank. 2018.
  2. Obeng-Odoom F. Enclosing the urban commons: Crises for the commons and commoners. Sustainable Cities and Society. 2018;40:648–656. Available from: https://doi.org/10.1016/j.scs.2018.01.001
  3. KJ, CV. Dumpsite rehabilitation. In: Lehmann EC., ed. Landfill Research Focus. (pp. 337-360) New York. Nova Science Publisher Inc. 2008.
  4. Sridevi V, Modi M, Lakshmi MVVC, Kesavarao L. A review on integrated solid waste management. International Journal of Engineering Science & Advanced Technology. 2012;2(5):1491–1499. Available from: https://www.scribd.com/document/527876783/10-1-1-300-9119
  5. Kumari S, Kiran UV. Prevalence of health problems of rag pickers due to various hazards at Lucknow city. Human Factors in Healthcare. 2022;2:1–8. Available from: https://doi.org/10.1016/j.hfh.2022.100023
  6. Yang H, Ma M, Thompson JR, Flower RJ. Waste management, informal recycling, environmental pollution and public health. Journal of Epidemiology and Community Health. 2018;72(3):237–243. Available from: https://dx.doi.org/10.1136/jech-2016-208597
  7. Kleinbaum D, Kupper L, Nizam A, Rosenberg E. Applied Regression Analysis and Other Multivariable Methods. (pp. 1-1072) Cengage Learning. 2013.
  8. Gamborg M, Jensen GB, Sørensen TI, Andersen PK. Dynamic path analysis in life-course epidemiology. American Journal of Epidemiology. 2011;173(10):1131–1139. Available from: https://doi.org/10.1093/aje/kwq502
  9. Bielderman A, Greef MHGD, Krijnen WP, Schans CPVD. Relationship between socioeconomic status and quality of life in older adults: a path analysis. Quality of Life Research. 2014;24(7):1697–1705. Available from: https://doi.org/10.1007/s11136-014-0898-y
  10. Howe LD, Tilling K, Galobardes B, Lawlor DA. Loss to follow-up in cohort studies: bias in estimates of socio-economic inequalities. Epidemiology. 2013;24(1):1–9. Available from: https://doi.org/10.1097/EDE.0b013e31827623b1
  11. Tobbin P. Adoption of Mobile Money Transfer Technology: Structural Equation Modeling Approach . European Journal of Business and Management . 2011;3(7):59–77. Available from: https://core.ac.uk/download/pdf/234624099.pdf
  12. Joreskog K, Sorbom D. LISREL 7: User‟s Reference Guide. (pp. 1-342) Chicago, IL. Scientific Software. 1993.
  13. Byrne BM. Structural Equation Modelling with AMOS. Basic concepts, applications, and programming. 2nd Edn, Routledge (2). (pp. 76-84) New York. Taylor & Francis Group. 2010.
  14. Gerbing DW, Anderson JC. Monte Carlo evaluations of goodness of fit indices for structural equation models. Sociological Methods & Research. 1992;21(2):132–160. Available from: https://doi.org/10.1177/0049124192021002002
  15. Hu LT, Bentler PM. Cut off Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives. Structural Equation Modeling: A Multidisciplinary Journal . 1999;6(1):1–55. Available from: https://doi.org/10.1080/10705519909540118
  16. Bagozzi RP, Yi Y. On the evaluation of structural equation models. Journal of the Academy of Marketing Science. 1988;16(1):74–94. Available from: https://doi.org/10.1007/BF02723327

Copyright

© 2024 Murali et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Bangalore University, Bengaluru, Karnataka

DON'T MISS OUT!

Subscribe now for latest articles and news.