Geographical analysis

Department of Geography & GIS

Article

Geographical analysis

Year: 2025, Volume: 14, Issue: 1, Pages: 77-87

Original Article

Assessing the Spatial Pattern of Health Inequalities and Driving Blueprint during the COVID-19 Pandemic in Kolkata Municipal Corporation, West Bengal in India

Received Date:06 December 2024, Accepted Date:10 August 2025

Abstract

This present study assessed the health inequalities and evaluated the relationship between urban development and pandemic vulnerability through the Composite Ibrahim Index (CIb) and framed the blueprint of multiple socio-economic drivers in the Kolkata Municipal Corporation (KMC) of India. The COVID-19 pandemic exacerbated pre-existing health and socio-economic inequalities across urban India, and Kolkata, being a leading megacity of India, conceptualizes its health as an emerging and critical hotspot area of investigation. The primary objective is to analyze spatial patterns of COVID-19 vulnerability across 141 wards of KMC and identify key determinants influencing household-level health inequality. Secondary data were sourced from the Census of India, the Bureau of Applied Economics and Statistics, and KMC records, and analytical techniques included time-series analysis (3-month moving average), Lorenz Curve, and Gini coefficient (0.75 indicating high inequality), Composite Z-scores, and multiple linear regression with marginal effect analysis. Results indicate that highly populated and socio-economically weaker wards, such as 31, 33, 66, and 70, reported higher active cases, while development status and COVID vulnerability showed a significant negative relationship (R² = 0.05, p < 0.001, N=141). Drivers such as open latrines, dilapidated housing, and households with no sanitation or drainage significantly reduced CIb values, while overcrowding increased vulnerability. The study concludes that socio-economically underdeveloped wards are disproportionately affected, and the null hypothesis of no relationship is rejected. As a policy measure, sustained vaccination, hygiene awareness, targeted urban health interventions, and strengthening of the National Urban Health Mission are essential to mitigate inequality and ensure resilient urban health systems. A data-driven, integrative approach is necessary for future pandemic preparedness in the context of rapid urbanization and sustainable management of Kolkata.

Keywords: Health inequality, Pandemic, COVID-19, Ibrahim index, Regression, Drivers, Kolkata

References

  1. Gupta V, Bergevin Y, Kruk M, Sachs J, Andrus J, Atun R, et al. Poverty, inequality, and COVID-19: A global perspective. World Development. 2021;142:105–197.
  2. Pawar M. Social and health consequences of COVID-19. International Social Work. 2020;63(5):639–642.
  3. Boza-Kiss B, Pachauri S, Zimm C. COVID-19: Impacts on inequality and poverty. Sustainability Science. 2021;16(3):747–760. Available from: https://doi.org/10.1007/s11625-021-00939-9
  4. Shadmi E, Chen Y, Dourado I, Faran-Perach I, Furler J, Hangoma P, et al. Health equity and COVID-19: global perspectives. International Journal for Equity in Health. 2020;19(1):1–16. Available from: https://dx.doi.org/10.1186/s12939-020-01218-z
  5. Rasul G, Nepal AK, Hussain A, Maharjan A, Joshi S, Lama A, et al. Socio-economic impacts of COVID-19 in South Asia. Sustainability. 2021;13(6):3427.
  6. Capolongo S, Rebecchi A, Buffoli M, Capasso L. Urban health during COVID-19: Perspectives and challenges. Sustainable Cities and Society. 2020;63:102417.
  7. Singu S, Acharya A, Challagundla K, Byrareddy S. The socio-economic determinants of COVID-19 in the United States. Futures. 2020;125:102660.
  8. Meurisse M, Lannoy M, Gadeyne S, Thomas I. Regional inequality and COVID-19 outbreaks in Belgium. Epidemiology and Infection. 2022;150:e92.
  9. Nie P, Chen Z, Wu Q, et al. Income-related health inequality among Chinese adults during the COVID-19 pandemic: evidence based on an online survey. International Journal for Equity in Health. 2021;20:241. Available from: https://doi.org/10.1186/s12939-021-01448-9
  10. He G, Zhang J, Qian J. Socio-economic inequalities among local migrants in China during COVID-19. Social Indicators Research. 2022;159:1121–1145.
  11. Nugraha R, Dermawan R, Wisnubrata A. Rehabilitation challenges during COVID-19 in Indonesia. Journal of Rehabilitation Medicine. 2020;52(7):jrm00078.
  12. Billah M. Socio-economic impact of COVID-19 in Bangladesh. Journal of Social Sciences. 2021;10(1):45–59.
  13. Kumar A, Pinky S. COVID-19 and socio-economic vulnerabilities in Bangladesh. Asian Social Work Journal. 2021;6(1):1–12.
  14. Dutta M, Basu T, Das S. COVID-19 outbreak in India: A temporal and spatial analysis. Journal of Environmental Geography. 2021;14(3-4):35–42. Available from: https://doi.org/10.2478/jengeo-2021-0004
  15. Aneja R, Ahuja V. Domestic violence and mental health concerns in India during COVID-19. Journal of Family Studies. 2021;27(3):307–321. Available from: https://doi.org/10.1080/13229400.2021.1877106
  16. Dey S, Ghosh A, Bairagi N. Healthcare infrastructure in India: A critical analysis. Indian Journal of Public Health Research. 2013;4(2):10–18.
  17. Siddiqui M, Ahmed S, Saxena K. Health system preparedness during COVID-19 in India. Indian Journal of Public Health. 2020;64(6):249–256.
  18. Basu A, Mazumder B. COVID-19 trends across Indian states: A comparative analysis. Indian Journal of Community Medicine. 2021;46(2):223–229. Available from: https://doi.org/10.4103/ijcm.ijcm_154_20
  19. Pandey S, Thapa B, Adhikari C. Determinants of COVID-19 spread in India: A spatial analysis. Journal of Public Health. 2021;43(3):413–420.
  20. Hati BK, Majumder R. Health infrastructure of West Bengal: A district-level analysis. Indian Economic Journal. 2011;59(4):120–137.
  21. Biswas T, Roy S, Saha S, Ghosh A. COVID-19 outbreak in Kolkata: Spatial clusters and vulnerability. Spatial and Spatio-Temporal Epidemiology. 2022;40:100462. Available from: https://doi.org/10.1016/j.sste.2021.100462
  22. Banerjee S. Public and private healthcare in Kolkata: A comparative appraisal. Indian Journal of Public Health. 2013;57(4):246–252. Available from: https://doi.org/10.4103/0019-557X.123256
  23. Bose M, Dutta A. Inequity in hospitalization care: a study on utilization of healthcare services in West Bengal, India. International Journal of Health Policy and Management. 2014;4(1):29–37. Available from: https://dx.doi.org/10.15171/ijhpm.2015.05
  24. Rebecchi A, Buffoli M, Speziale C, Capolongo A. Urban health inequalities in Kolkata: A spatial assessment. Urban Studies. 2016;53(8):1641–1659.
  25. Mondal BK, Ghosh D, Dutta A. Budget allocation and health sector change in West Bengal. Economic and Political Weekly. 2021;56(7):22–29.
  26. Nath S, Ghosh D, Bhandari S. COVID-19 susceptibility and socio-economic vulnerability in Kolkata. GeoJournal. 2021;86:1965–1982.
  27. Sitthiyot T, Holasut K. A simple method for measuring inequality using the Gini coefficient. Journal of Health Research. 2020;35(2):121–127.
  28. Gisselquist RM. Developing and evaluating governance indexes: 10 questions. Policy Studies. 2014;35(5):513–531. Available from: https://dx.doi.org/10.1080/01442872.2014.946484
  29. Uyanık GK, Güler N. A Study on Multiple Linear Regression Analysis. Procedia - Social and Behavioral Sciences. 2013;106:234–240. Available from: https://dx.doi.org/10.1016/j.sbspro.2013.12.027

Copyright

© 2025 Basu & Mondal. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Bangalore University, Bengaluru, Karnataka

DON'T MISS OUT!

Subscribe now for latest articles and news.