Geographical analysis

Department of Geography & GIS

Article

Geographical analysis

Year: 2025, Volume: 14, Issue: 2, Pages: 14-21

Original Article

Monitoring Precipitation Patterns and their Direct Impacts on Vegetation and Water Indices for Mangura Nala Watershed using Geospatial Approaches in Bihar State, India

Received Date:26 May 2025, Accepted Date:10 August 2025

Abstract

Among the several impacts of climate change, variation in global and regional precipitation patterns is evident in the current scenario. Spatiotemporal alterations, including a rise in frequency and severity of extreme weather events, are manifested in the occurrence of wide-scale droughts, floods, and heavy rainfall. Since climate change is inevitable, studying and monitoring shifts in precipitation patterns can help us cope with the adverse effects of climate change. To understand this effect at a regional scale, a study has been conducted on the Mangura Nala watershed to monitor the precipitation pattern and their impact on vegetation and water indices. In this evaluation process, a 2013-2023 gridded precipitation dataset, MODIS satellite data sets, and Landsat-8 satellite data have been incorporated to examine precipitation, vegetation, and water body trends in the study region. The index called Normalized Difference Water Index (NDWI) has been used to fathom the distribution and condition of water bodies in the study region, while the Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) indices were used to monitor the vegetation conditions in the region.

Keywords: NDWI, EVI, NDVI, Precipitation, Mangura Nala Watershed

References

  1. Islam T, Rico-Ramirez MA, Han D, Srivastava PK, Ishak AM. Performance evaluation of the TRMM precipitation estimation using ground-based radars from the GPM validation network. Journal of Atmospheric and Solar-Terrestrial Physics. 2012;77:194–208. Available from: https://dx.doi.org/10.1016/j.jastp.2012.01.001
  2. Gajbhiye S, Meshram C, Singh SK, Srivastava PK, Islam T. Precipitation trend analysis of Sindh River basin, India, from 102‐year record (1901–2002) Atmospheric Science Letters. 2016;17(1):71–77. Available from: https://dx.doi.org/10.1002/asl.602
  3. Srivastava PK, Han D, Rico-Ramirez MA, Islam T. Sensitivity and uncertainty analysis of mesoscale model downscaled hydro-meteorological variables for discharge prediction. Hydrological Processes. 2014;28(15):4419–4432. Available from: https://dx.doi.org/10.1002/hyp.9946
  4. Harishnaika N, Ahmed SA, Kumar S, MA. Spatio-temporal rainfall trend assessment over a semi-arid region of Karnataka state, using non-parametric techniques. Arabian Journal of Geosciences. 2022;15(16):1392. Available from: https://dx.doi.org/10.1007/s12517-022-10665-7
  5. Warsi T, Mukherjee S, Biswas G, Mitran T, Rizvi SS. Urban water resources and its sustainable management. Current Directions in Water Scarcity Research. 2022;6:489–509. Available from: https://doi.org/10.1016/B978-0-323-91838-1.00020-8
  6. Mukherjee S, Rizvi SS, Biswas G, Paswan AK, Vaiphei SP, Warsi T, et al. Aquatic Eco-systems Under Influence of Climate Change and Anthropogenic Activities: Potential Threats and Its Mitigation Strategies. In: Hydrogeochemistry of Aquatic Ecosystems. (pp. 307-331) 2023.
  7. Sultana T, Hegde S, Warsi T, Tahama K, Rizvi SS, Mukherjee S, et al. Data analytics for drought vulnerability under climate change scenarios. In: Data Analytics and Artificial Intelligence for Earth Resource Management. (pp. 137-156) Elsevier. 2025.
  8. Ashok K, Guan Z, Saji NH, Yamagata T. Individual and Combined Influences of ENSO and the Indian Ocean Dipole on the Indian Summer Monsoon. Journal of Climate. 2004;17(16):3141–3155. Available from: https://dx.doi.org/10.1175/1520-0442(2004)017<3141:iacioe>2.0.co;2
  9. Dash SK, Jenamani RK, Kalsi SR, Panda SK. Some evidence of climate change in twentieth-century India. Climatic Change. 2007;85(3-4):299–321. Available from: https://dx.doi.org/10.1007/s10584-007-9305-9
  10. Mondal A, Khare D, Kundu S. Spatial and temporal analysis of rainfall and temperature trend of India. Theoretical and Applied Climatology. 2015;122(1-2):143–158. Available from: https://dx.doi.org/10.1007/s00704-014-1283-z
  11. Kokaly RF, Despain DG, Clark RN, Livo KE. Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data. Remote Sensing of Environment. 2003;84(3):437–456. Available from: https://dx.doi.org/10.1016/s0034-4257(02)00133-5
  12. Ogutu JO, Piepho HP, Dublin HT, Bhola N, Reid RS. El Niño‐-Southern Oscillation, rainfall, temperature and Normalized Difference Vegetation Index fluctuations in the Mara‐Serengeti ecosystem. African Journal of Ecology. 2008;46(2):132–143. Available from: https://dx.doi.org/10.1111/j.1365-2028.2007.00821.x
  13. Wang J, Rich PM, Price KP. Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. International Journal of Remote Sensing. 2003;24(11):2345–2364. Available from: https://dx.doi.org/10.1080/01431160210154812
  14. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, et al. Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science. 2003;300(5625):1560–1563. Available from: https://dx.doi.org/10.1126/science.1082750
  15. Raghavendra BR, Aslam MAM. Sensitivity of vegetation indices of MODIS data for the monitoring of rice crops in Raichur district, Karnataka, India. The Egyptian Journal of Remote Sensing and Space Science. 2017;20(2):187–195. Available from: https://dx.doi.org/10.1016/j.ejrs.2016.06.005
  16. CJT, PJS. Satellite remote sensing of primary production. International Journal of Remote Sensing. 1986;7(11):1395–1416. Available from: https://dx.doi.org/10.1080/01431168608948944
  17. McFeeters SK. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing. 1996;17(7):1425–1432. Available from: https://dx.doi.org/10.1080/01431169608948714
  18. Ashtekar AS, Mohammed-Aslam MA, Moosvi AR. Utility of Normalized Difference Water Index and GIS for Mapping Surface Water Dynamics in Sub-Upper Krishna Basin. Journal of the Indian Society of Remote Sensing. 2019;47(8):1431–1442. Available from: https://dx.doi.org/10.1007/s12524-019-01013-6
  19. Shalini, Kommineni HR, Jeelani SH, Jaragapu DCK, Rizvi SS. Land use landcover and accuracy evaluation using remote sensing and GIS in and around Vijayawada city Andhra Pradesh, India. AIP Conference Proceedings. 2023;2759:020005. Available from: https://doi.org/10.1063/5.0146411
  20. Mohanta T, Rizvi SS, Mohammed-Aslam MA, Jeelani SH. Mapping of LULC change detection using remote sensing and GIS in Kalaburagi district, Karnataka, India. In: AIP Conference Proceedings. (Vol. 2759, p. 020006) AIP Publishing. 2023.
  21. Chen XL, Zhao HM, Li PX, Yin ZY. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment. 2006;104(2):133–146. Available from: https://dx.doi.org/10.1016/j.rse.2005.11.016
  22. Arpitha M, Ahmed SA, NH. Land use and land cover classification using machine learning algorithms in google earth engine. Earth Science Informatics . 2023;16:3057–3073. Available from: https://doi.org/10.1007/s12145-023-01073-w

Copyright

© 2025 Bala et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Bangalore University, Bengaluru, Karnataka

DON'T MISS OUT!

Subscribe now for latest articles and news.