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Abstract
This study aims at identifying rice crop area in Chae Chang and Buak Kang subdistricts, of San
Kamphaeng District, Chiang Mai Province, Thailand through Object Based Image Analysis
approach. It investigates the best fit of three elements: (1) most suitable band combination of
Sentinel-1 and Sentinel-2 satellite images; (2) optimum parameters for image segmentation;
and (3) best performing classifier algorithm in Google Earth Engine [GEE]. The six bands of
Sentinel-1 [VV & VH from ascending and descending orbits] and Sentinel-2 [B2, B3, B4 &
B8] were used in different combinations. Simple Non-Iterative Clustering [SNIC] method was
applied for image segmentation. Three algorithms, Support Vector Machine [SVM], Gradient
Boosting Trees [GBT] and RandomForest [RF] were tested for classification and validation.The
study analyzed the outcomes of five different band combinations, thirty sets of SNIC parameters
- including Compactness [Co], Connectivity [Cn], Neighborhood Size [Ns], Segment Size [Ss]
- and three classifier algorithms in GEE. The highest overall accuracy of 97% and a Kappa
coefficient of 0.94 was achieved by using all the six bands of the images of the two satellites
[Ascending orbit of Sentinel-1] with the SNIC parameter set including Co=0.1, Cn=8, Ns=10,
and Ss=5 in RF classifier algorithm. The study reveals that higher Co levels lead to more circle
like segments thus unsuitable for rectangular agricultural fields. The results validated against
Regions of Interest [ROI] indicate that the optimized SNIC parameters effectively delineated the
big and small rice fields covering 34.64 km2 [73%] of the total 47.23 km2 area of the two sub-
districts. The study offers a pathway for improving classification accuracy in various contexts,
particularly in rice area classification.

Keywords:Object-Based Image Analysis; Simple Non-Iterative Clustering; Sentinel-1 and Sentinel-2
images; Support Vector Machine Classifier; Gradient Boosting Trees Classifier; Random Forest Classifier
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1 Introduction
Physical changes on the earth’s surface due to natural pro-
cesses and human interventions are continuous phenomena.
The human induced changes in agricultural land use appear
more frequently due to seasonal cropping patterns. Efficient
technologies and advanced methodologies are required for
recording and analyzing the extent and pace of such changes
for monitoring and management of economic and environ-
mental aspects. As the Remote Sensing [RS] platforms pro-
viding images of the Earth’s surface at various spatial and
temporal resolutions have evolved over time, so have devel-
oped the image processing and analysis approaches (1). One
of the prominent image classification methods, Geographic
Object-Based Image Analysis [GEOBIA], segments the tar-
get RS image by identifying the pixels of similar character-
istics and then groups them into objects corresponding to
various land use land cover [LULC] classes (2). This approach
offers more accurate representation of landscape structures
and patterns by reducing the noise associated with single-
pixel based analysis (3). GEOBIA is particularly effective in
the processing of high-resolution images as it can capture
fine details and patterns more precisely (4). Overcoming the
effects of shadows, it utilizes various object attributes like
color, shape, size, and texture for efficient differentiation and
classification of complex objects (5). Moreover, it can be inte-
grated with the technologies like Machine Learning [ML]
and Artificial Intelligence [AI] to enhance analytical algo-
rithms. As mentioned, GEOBIA involves two main steps,
i.e. image segmentation and object classification. A variety
of algorithms are available for segmentation and delineation
of objects, and ‘Simple Non-Iterative Clustering [SNIC]’ is
used widely. The common ML classification algorithms used
include Support Vector Machines [SVM], Gradient Boosting
Trees [GBT] andRandomForests [RF].Thewidespread use of
these classifiers in remote sensing applications is recognized
for their robust performance (6,7). Thus, Comparing the rela-
tive performance of these classifiers is desirable for selecting
the most suitable model considering the crucial factors like
accuracy, complexity, resource usage, and practical applica-
tion flexibility. Proper implementation of ML classification
algorithms improves accuracy, increases operational flexibil-
ity and allows efficient processing of large datasets. Addition-
ally, theseminimize the chances of human errors and enhance
the reliability of the results (8).

Google Earth Engine [GEE], based on Google Cloud Plat-
form, is an invaluable online facility for storage, retrieval, pro-
cessing and applications of remote sensing datasets of various
spatial and temporal scales. The platform’s ability to quickly
access high-resolution images allows the users to efficiently
process large size datasets. Additionally, GEE offers numer-
ous pre-built tools and algorithms for data processing, analy-
sis and display, making it ideal for studying and monitoring
contemporary environmental changes through online plat-

forms (9). The integration of Google Cloud ML technology
with RS, particularly utilizing Sentinel-1 datasets, involves
extracting key features from Synthetic Aperture Radar [SAR]
data.This provides a highly efficient tool and technique, espe-
cially effective for classifying rice fields. The SAR imaging
capably captures data during day and night times as well as in
all weather conditions i.e. cloudy, rainy, snowy etc. Also, the
SAR images provide VV [Vertical Transmit Vertical Receive]
andVH [Vertical TransmitHorizontal Receive] polarizations,
and the difference values of these two channels enhance the
probability of identifying the physical characteristics of rice
crop area more accurately (10,11).

Classifying post-harvest rice fields using satellite imagery
poses significant challenges due to varying field conditions
and the diverse nature of satellite data. Identifying the opti-
mal combination of classification methods and parameters
for accurate detection remains a complex task. Therefore,
this study aims to explore and compare various classifica-
tion methods for identifying post-harvest rice fields using
Sentinel-1 satellite imagery within the GEE platform.

2 Study Area
Chae Chang and Buak Kang subdistricts, located in the San
Kamphaeng District of Chiang Mai Province, Thailand, cover
an area of approximately 47.225 km2 [Figure 1].

Fig. 1. Satellite View of the Study Area

The study area located between 99∘04’32”E, 99∘10’54”E
longitudes and 18∘40’07”N, 18∘44’30”N latitudes includes 23
villages. Its physiography is a mixture of flat plains and low
hills, and the cultural landscape is predominantly composed
of agricultural fields with intermittent settlements and roads.
It has tropical monsoon climate with an average annual
rainfall of about 1,100 millimeters, the large part of which
is received during the rainy season from May to October.
The average monthly temperature is around 31∘Celsius with
a mean monthly minimum about 18∘C in January and
mean monthly maximum nearly 38∘C in April. The area
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also benefits from two well-developed irrigation systems,
namely Mae-On and Mae Kuang, ensuring the water supply
essential for winter-season rice cultivation. The advantageous
topography, favorable climatic conditions and availability of
irrigation facilities make these subdistricts well-suited for
large-scale rice cultivation supporting the livelihoods of the
residents. The population of these subdistricts is about 11,000
persons, mostly engaged in rice cultivation which is their
staple food and primary source of income (12).

3 Data and Methods

3.1 Data Acquisition and Pre-Processing

This study focuses on identifying the area under rice crop
which requires complete LULC classification based on satel-
lite images of the study area and then separate the ‘rice area’.
Special emphasis is on the ‘Harvest Stage’ as this marks the
period of peak growth and ready to harvest rice crop across
the study area which runs from September to December
depending on the time of plantation [Table 1].

Table 1. Stages of Rice Cropping
Planting
Stage

Growth Stage Harvest Stage

Seeding /
Planting

Water management
and fertilization

Monitoring maturity
and harvesting

May – June July – August September – December

This study is based on the images captured by Sentinel-
1 and Sentinel-2 satellites. For Sentinel-1, dual-polarization
mode of VV and VH Interferometric Wide Swath [IW]
Ground Range Detected [GRD] products have been used.
The two Sentinel-1 images of ascending [24-09-2023] (9) and
descending (9,13) orbits have been filtered according to the
boundary of the study area [Table 2]. Additionally, the three
visible and one near-infrared band of Sentinel-2 satellite
image (11,14) having up to 5% cloud cover was incorporated
for comprehensive view of the Earth’s surface leveraging
the unique strengths of the two datasets. Both the satellites
provide images of 10-meter spatial resolution facilitating
detailed mapping and precise monitoring of LULC.

All the image datasets were processed through the
Sentinel-1 toolbox within GEE and optimized for LULC
classification. The Sentinel-1 toolbox includes several opera-
tions i.e. importing Sentinel-1 data, applying point filtering,
and performing various analyses such as noise removal,
calibration, and terrain correction.

The initial information about LULC of the study area
was collected from the relevant government agencies (15).
Additionally, the research team made several visits to the
study area from May to November 2023 and collected
required data about each stage of rice cropping. Along
with other details, they also recorded 200 segment locations

Table 2. Integrated Image Datasets for LULC Classification
Date of Cap-
ture

Source Band Combi-
nation

Spatial
Resolu-
tion

21-09-2023 and
24-09-2023

Sentinel-1 VV and VH 10 meters

20-11-2023 Sentinel-2 B2, B3, B4, and
B8

10 meters

Multibands-
1

VV, B2, B3, B4,
and B8

10 meters

Multibands-
2

VH, B2, B3, B4,
and B8

10 meters

Multibands-
3

VV, VH, B2, B3,
B4, and B8

10 meters

VV = Single co-polarization, vertical transmit vertical receive.
VH = Dual-band cross-polarization, vertical transmit horizontal
receive. B2 = Blue [B]; B3 = Green [G]; B4 = Red [R]; B8 = Near
Infra-Red [NIR]. NOTE: These datasets contain the products of
the Sentinel-1 and Sentinel-2 Satellite, provided by the European
Space Agency [ESA] and accessed through Google Earth Engine.
Further details can be accessed at:https://sentiwiki.copernicus.e
u/web/sentiwiki

representing various LULC types to be used as the Regions
of Interest [ROI] in the object bases image classification
process. The segments of ROI consisting of 60% rice fields,
20% built-up areas, 10% tree cover, 4% water bodies, and 6%
other land types were proportionally divided between the two
sub-districts. The set of 140 [70%] of the total 200 samples
were used for training and remaining 60 [30%] for validation
[Table 3].

Table 3.The Region of Interest [ROI] Segment Samples
LULC Class Training

[70%]
Validation
[30%]

TOTAL

Rice area 86 37 123
Built-up 29 12 41
Tree cover 13 6 19
Water bodies 4 2 6
Other 8 3 11
TOTAL 140 60 200

3.2 Methods

The study aims at classifying rice and non-rice areas integrat-
ing remote sensing data with field observations. Image pro-
cessing and analysis were carried out using the GEE cloud
computing platform. The conceptual flow work methodology
of the study is illustrated in Figure 2.
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Fig. 2. Conceptual Framework and Methodology of the Study

3.2.1 Simple Non-Iterative Clustering [SNIC]
TheSNICalgorithm inGEE is an image segmentationmethod
designed to group neighboring pixels into superpixels based
on their spectral and spatial proximity. This technique is
particularly beneficial for reducing data dimensionality and
noise, thereby enhancing the efficiency and accuracy of
subsequent analyses such as image classification or change
detection (16). Unlike other segmentation algorithms, SNIC
is non-iterative and focuses on creating superpixels that are
uniform in size and shape. The equation of this method is
following:

𝑆[𝑝,𝑐] = 𝛼×𝑑𝑠[𝑝,𝑐] + [1−𝛼]×𝑑𝑥[𝑝,𝑐] (1)

Where: 𝑆[𝑝,𝑐] measures the similarity between pixels, 𝑝
is to a potential superpixel center, 𝑐 is often based on a
combination of 𝑑𝑠 and 𝑑𝑥, 𝛼 is a parameter that balances the
weight between spectral and spatial contributions to the total
similarity measure, 𝑑𝑠[𝑝,𝑐] represents the Euclidean distance
between the spectral values of pixel 𝑝 and superpixel center 𝑐,
𝑑𝑥[𝑝,𝑐] is the spatial distance between the location of pixel 𝑝
and the centroid of superpixel 𝑐

The segments are defined through the-
’ee.Algorithms.Image.Segmentation.SNIC()’ function of

SNIC algorithm in GEE. The algorithm identifies and groups
the pixels of similar surface texture patterns to form seg-
ments. These segments are then correlated with 200 sample
ROIs [Table 3] to represent LULC types for classification and
validation. The SNIC function includes several parameters:
Compactness [Co], Connectivity [Cn], Neighborhood Size
[Ns], and Segment Size [Ss], each influencing the segmenta-
tion process differently. Co affects the shapes of the clusters,
with higher values leading to more compact and circular-

shaped clusters, aiding in object distinction. Cn determines
how adjacent objects are linked to form connected superpix-
els. Ns is important for avoiding the tile boundary artifacts
and defining the size of neighboring objects. Ss sets the inter-
vals at which superpixel seeds are placed within the area. In
this study, various settings of these four parameters [Table 4]
were applied for identifying themost suitable combination for
best segmentation leading to high accuracy of classification.

Table 4. Parameters used in SNIC for Image Segmentation
Compactness [Co] Connectiv-

ity [Cn]
Neighborhood
size [Ns]

Segment
size [Ss]

0.1 0.3 0.5 0.7 1 4 8 10 5 10 20
NOTE: There are total 11 parameters out of which Co has 5, Cn has
2, Ns has only 1, and Ss has 3 parameters. Changing one value of one
parameter at a time provided 30 sets of SNIC parameters for segmentation.
Themost suitable set of parameters was assessed through the values of Kappa
Coefficient [K].

3.2.2 Support Vector Machine [SVM] Classifier
It is a supervised machine learning algorithm in GEE. Its
ability to distinctly separate different types of data makes it
particularly effective for classification tasks, especially when
using the high-resolution satellite imagery (17). In this study,
the SVM algorithm determined the optimal hyperplane that
maximized the margin between various classes. The scientific
equation of the hyperplane is represented as following:

𝑤 ×𝑥+𝑏 = 0 (2)

The decision function:

𝑓[𝑥] = 𝑠𝑖𝑔𝑛[𝑤 ×𝑥+𝑏] (3)

Where:𝑤 is the normal vector to the hyperplane,𝑥 is the input
feature vector, and 𝑏 is the bias term.This equation determines
the class of a given input vector 𝑥, either -1 or 1, representing
two different land cover types.

3.2.3 Gradient Boosting Trees [GBT] Classifier
GBT inGEE incrementally constructsmodels by optimizing a
loss function.This technique is especially effective in handling
complex datasets and enhancing accuracy through its layered
modeling approach. GBT efficiently manages imbalanced
datasets and provides adjustable parameters to tackle various
classifications by iteratively learning from previous models
andGBT reduces errors and improves overall outcomes (18,19).
Themodel’s equation is expressed as follows:

𝐹[𝑥] = Σ𝑁
𝑖=1𝛾𝑖ℎ𝑖[𝑥] (4)

Where: 𝐹[𝑥] is the final prediction model, 𝛾𝑖 are the
weights assigned to each tree, ℎ𝑖[𝑥] are the predictions from
individual weak learner trees.
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3.2.4 Random Forest [RF] Classifier
In GEE, the RF constructs multiple decision trees during
training process and outputs the statistical mode of the classes
for images classification or the statistical mean prediction
for regression. Its robust ability to handle multi-dimensional
and complex datasets helps efficient classification process.
Moreover, the use of multiple trees reduces the risk of
overfitting the model and ensures its stability (20,21). Below is
given its equation:

𝑓[𝑥] = 1
𝑁 Σ𝑁

𝑖=1𝑓𝑖[𝑥]

Where: 𝑓𝑖[𝑥] is the prediction from the 𝑖-th tree and 𝑁 is the
number of trees.

3.2.5 Accuracy Assessment and Validation
The percentage of Overall Accuracy [OA] and the values
Kappa Coefficient [K] have been used for assessing and
validating the accuracy of the classification. Although the
values of K may range between -1 and +1 but the ones
more than 0.8 represent greater agreement so only such
values have been considered for identifying the best fit of
SNIC parameters with the three classifiers. The equation for
calculating overall accuracy is following:

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 [𝑂𝐴] = Σ𝑁
𝑖=1𝐶𝑖𝑖

Σ𝑁
𝑖=1𝑇𝑖

(6)

Where: 𝑁 is total number of classes, 𝐶𝑖𝑖 is number of
correctly classified samples for class 𝑖, 𝑇𝑖 is total number of
samples for class 𝑖

The kappa coefficient equation is:

𝐾𝑎𝑝𝑝𝑎 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 [𝐾] = 𝑃𝑜 − 𝑃𝑒
1−𝑃𝑒

Where: 𝑃𝑜 is observed agreement [Σ𝑁
𝑖=1𝐶𝑖𝑖
𝑇𝑖

] and 𝑃𝑒 is
expected agreement [Σ𝑁

𝑖=1[𝑇𝑖×𝐶𝑖]
𝑇 2 ] by 𝑇 is total number of

samples, 𝑇𝑖 is total number of samples for class 𝑖, 𝐶𝑖 is total
number of samples classified into class 𝑖

4 Results and Discussion

4.1 SNIC Parameters

The analysis of 30 sets of the SNIC parameters reveals
that variations in the parameter values cause variations
in segmentation of the images. Changes the level of Co
[superpixel density] result in slight alterations in the location,
shape, and size of the segments. Higher levels of Co tend
to produce more circle like segments, which are not suitable
for fitting rectangular shaped rice crop fields. In case of Cn
values, the properties of the adjacent pixels can be interpreted
by using Cn=4 [horizontal and vertical directions] and Cn=8
[horizontal, vertical and 2 diagonal directions].

Table 5. SNIC Parameters, OA and K Values ofThree Classifiers
SNIC Parameters SVM GBT RF

Co Ct Ns Ss OA% K OA% K OA% K
0.1 4 10 5 53 0.09 94 0.90 95 0.91
0.3 4 10 5 95 0.91 94 0.90 95 0.91
0.5 4 10 5 53 0.09 94 0.90 95 0.91
0.7 4 10 5 53 0.09 94 0.90 95 0.91
1 4 10 5 53 0.09 94 0.90 95 0.91
0.1 8 10 5 53 0.11 94 0.89 97 0.94
0.3 8 10 5 53 0.11 94 0.89 96 0.92
0.5 8 10 5 53 0.09 94 0.89 96 0.92
0.7 8 10 5 53 0.09 94 0.89 96 0.92
1 8 10 5 53 0.09 94 0.89 96 0.92
0.1 4 10 10 51 0.17 86 0.74 87 0.76
0.3 4 10 10 51 0.17 86 0.74 87 0.76
0.5 4 10 10 51 0.17 86 0.74 87 0.76
0.7 4 10 10 51 0.17 86 0.74 87 0.76
1 4 10 10 51 0.17 86 0.74 87 0.76
0.1 8 10 10 63 0.23 91 0.83 91 0.84
0.3 8 10 10 63 0.23 91 0.83 91 0.84
0.5 8 10 10 63 0.23 91 0.83 91 0.84
0.7 8 10 10 63 0.23 91 0.83 91 0.84
1 8 10 10 63 0.23 91 0.83 91 0.84
0.1 4 10 20 44 0.13 83 0.67 86 0.73
0.3 4 10 20 44 0.13 83 0.68 86 0.73
0.5 4 10 20 44 0.13 83 0.67 86 0.73
0.7 4 10 20 44 0.13 83 0.67 86 0.73
1 4 10 20 44 0.13 83 0.68 86 0.73
0.1 8 10 20 53 0.08 81 0.66 88 0.77
0.3 8 10 20 53 0.08 81 0.66 88 0.77
0.5 8 10 20 53 0.08 81 0.66 88 0.77
0.7 8 10 20 53 0.08 81 0.66 88 0.77
1 8 10 20 53 0.08 81 0.66 88 0.77
Co = Compactness; Cn = Connectivity; Ns = Neighborhood
Size; Ss = Segment Size; SVM = Support Vector Machine:
GBT = Gradient Boosting Trees; RF = Random Forest; OA =
Overall Accuracy; K = Kappa Coefficient

Using Cn=8 produces neater segments and reduces seg-
ment fragmentation in the areas with minimal differences.
The Ns [necessary for avoiding artifacts at the boundaries]
refers to the radius of the region used in segment computa-
tion. The larger Ns allows the inclusion of more similar seg-
ments within the same area, which is appropriate for classify-
ing large and less segmented areas. Further, Ss is crucial for
parameter adjustment and is necessary for the accurate clas-
sification of rice fields of various sizes. Setting the Ss smaller
helps achieving more detailed and better separation of areas,
though it may result in an excessive number of segments.
In this study, the optimal set of SNIC parameters leading to
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highest accuracy of classification across the three classifiers
are presented inTable 5.The table shows that themost optimal
set of SNIC parameters was found as: Co=0.1; Cn=8; Ns=10
and Ss=5 leading to achieve OA of 97% and K of 0.94 in
LULC classification facilitating reliable identification of rice
crop area. Finding an optimal set of parameter is crucial for
accurate LULC classification (13,14,22).

4.2 Classifier Algorithms

When comparing the overall performance of the three
classifier algorithms, SVM returned lowest values of OA
and K, while GBT provided relatively better results and
RF emerged to the best [Table 6] (23,24). Also, it was found
that using only VV and VH polarization data of Sentinel-
1 resulted in poor classification in all the three classifiers.
However, combining B2, B3, B4, and B8 bands of Sentinel-
2 with VV and VH polarization data from Sentinel-1
significantly improved the accuracy of classification. The
highest values of OA=97% and K=0.94 were provided by
the RF classifier from Multibands-3 combination including
Ascending Orbit datasets of Sentinel-1 satellite, illustrating
the benefits of multiple data fusion in remote sensing
applications (25).

4.3 LULC Classification and Rice Crop Area
Identification

In GEOBIA approach, the classifier algorithms require a ROI
for grouping various segments into corresponding LULC
classes. The 200 segment locations representing six LULC
classes collected during the fieldwork [Table 3] were divided
into two parts i.e. 140 [70%] for training the classifiers and
60 [30%] for validating the accuracy of classification. As
mentioned above, RF algorithm provided the best results
[OA=97% and K=0.94] based on appropriate combination
of bands and optimum set of SNIC parameters. Out of total
47.23 km2 area of the two sub-districts, 34.64 km2 [73.32%]
is covered under rice crop fields [Table 7 & Figure 3]. The rice
crop area falling in Buak Khang is about 22.53 km2 and Chae
Chang is nearly 12.10 km2.The remaining 12.6 km2 [26.68%]
of the total study area turns out as non-rice area which
includes various types of built-up areas, tree cover, water
bodies, and other areas used for miscellaneous purposes.

Although various types of non-rice areas are small-sized
and occur intermittently in the study area [Figure 3], but
the methodology used for LULC classification demonstrates
its ability to distinguish complex areas quite effectively.
Despite the limitations in segmenting the images of complex
regions, it is suitable for generating continuous and uniform
stretches of rice crop areas and large-scale agricultural and
environmental monitoring (26–29).

Table 6. Overall Accuracy and Kappa Coefficient Provided by the
Three Classifiers

Results of Optimum Set of SNIC Parameters: Co = 0.1,
Cn = 8, Ns = 10, Ss = 5

Descending OA
[%]

Kappa Ascending OA
[%]

Kappa

SVM

VV 30 0.00

SVM

VV 27 -
0.03

VH 36 -
0.01

VH 27 -
0.01

Multibands-
1

50 0.03 Multibands-
1

27 -
0.01

Multibands-
2

50 0.06 Multibands-
2

53 0.11

Multibands-
3

45 -
0.01

Multibands-
3

49 0.07

GBT

VV 67 0.38

GBT

VV 63 0.29
VH 73 0.47 VH 69 0.40
Multibands-
1

92 0.85 Multibands-
1

92 0.87

Multibands-
2

93 0.88 Multibands-
2

91 0.84

Multibands-
3

92 0.86 Multibands-
3

92 0.86

RF

VV 70 0.44

RF

VV 66 0.30
VH 69 0.41 VH 67 0.36
Multibands-
1

90 0.81 Multibands-
1

95 0.90

Multibands-
2

94 0.90 Multibands-
2

94 0.89

Multibands-
3

91 0.83 Multibands-
3

97 0.94

Table 7. Area of Various LULC Classes
Rice
Crop
[km2]

Built-
Up
[km2]

Tree
Cover
[km2]

Water
Bodies
[km2]

Other
[km2]

TOTAL
[km2]

34.63
[73.32%]

6.06
[12.83%]

5.49
[11.62]

0.65
[1.31%]

0.40
[0.84%]

47.23
[100%]

5 Conclusions
This study attempts to identify the most suitable machine
learning algorithm for delineating the area under rice crop
adopting GEOBIA approach. It investigates the outcomes of
several crucially relevant factors which include 5 combina-
tions of 6 multi-sensor satellite image bands, 5 sets of 4 image
segmentation parameters and 3 classifier algorithms using
GEE for processing and analysis.The SNIC operation was run
for segmenting the selected multi-sensor image bands and
LULC classification was performed through SVM, GBT and
RF algorithms.
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Fig. 3. The Best Rice Area Classification Result

The results indicate that minimal image segmentation
provides better alignment of the segment boundaries with
the boundaries of the corresponding sample areas collected
in fieldwork. Although, an optimal set of 4 SNIC parameters
was identified but these may or may not be suitable for other
areas because shape and size of agricultural fields require
adaptation of these parameters.

While comparing the 3 ML classifier algorithms, RF
outperformed SVM and GBT in terms of OA [97%] and
K [0.94]. SVM was less effective due to its computational
intensity and reduced accuracywith distinct class boundaries,
but GBT performed better particularly in case of imbalanced
spatial pattern. Integration of the 3 optical bands of Sentinel-2
with theVV andVHpolarization data of Sentinel-1 enhanced
the classification performance significantly, highlighting the
benefits of multi-sensor data fusion.

The capability of segments in capturing the objects
accurately is fundamental in determining the accuracy of
classification. Each classifier’s capabilities vary depending on
the segmentation parameters. The results show that using
different classifiers with the same parameters significantly
impacts classification outcomes, with RF performing best
compared to SVM and GBT. Therefore, it can be concluded
that classification accuracy and precision should derive from
both good segmentation and good classifier.
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