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Abstract 
NASA’S EO-1 Hyperion sensors launched in November 2000. It provides good opportunity to 
evaluate the spaceborne hyperspectral capabilities. Hyperion sensors cover 0.4 to 2.5μm 
range with 242 spectral bands at approximately 10nm spectral resolution and 30m spatial 
resolution from 705km orbit. The enhanced information contains sensors which provides, 
hyperspectral analysis methods, namely Minimum Noise Fraction- transformation (MNF) for 
data quality assessment and noise reduction as well as Spectral Angle Mapper (SAM) for 
classification of Mineral potential zones. The Classification results show the detailed 
information that can be extracted from the source of information. The analysis reveals that 
Hyperion scene is strongly affected by system induced radiometric interferences. As a result 
considerable amount of bands are to be discarded to allow satisfying results.  
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Introduction 
Hyperspectral sensors have hundreds of channels, aircraft and satellite platforms which  
provide unique spectral datasets which are helpful in analyzing the surface mineralogy 
mapping (Goetz et al., 1985; Kruse et al., 2003, Debba et al., 2005, Vaughan et al., 2003). 
Compared to multispectral sensors hyperspectral images provide higher spectral resolution 
(Clark et al., 1990, Magendra and Sanjeevi 2014, Van der Meer 2012). The Hyperion image 
has 30m spatial resolution, 242 channels and 7.7 km swath. In some of the minerals, the 
hyperspectral (Hyperion) sensor with 0.4-2.5μm spectral range (EO-1 User guide) rocks 
show good absorption and reflectance due to variation in physico-chemical properties. It 
helps in their exploration mapping (Clark et al., 1990; Hunt et al., 1971). The spectral 
reflectance can detect and identify the Earth surface and atmospheric constituents to 
measure the reflected spectra’s component concentration. We can find the distribution of the 
component and validate by improving models. The processing of hyperspectral image is a 
challenging task. It consists hundreds of channels. 
The selection of required channels with its good apparent reflection requires good skills. 
FLAASH uses the most advanced techniques for handling particular stressing atmospheric 
conditions such as the presence of clouds, cirrus and opaque cloud classification map 
adjustable spectral polishing for artifact suppression (ITT-Vis, 2010). The Hyperion image 
consist huge number of channels which are to be reduced dimensionally. The techniques 
like Minimum Noise Fraction (MNF) transform is used to reduce the number of spectral 
dimensions which are to be analyzed. The pure pixels are the most spectrally extreme pixels 
(Broadman et al., 1995), which spectrally correspond to the mixing end members. These end 
members form the base for the n- Dimensional visualization and each selected end 
members is spectrally matched with USGS spectral library. 
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Mineral mapping using hyperspectral remote sensing 
The iron bearing minerals, hydroxyl bearing minerals sulphates and carbonates spectral 
features are covered in the near visible near infrared image (VNIR) and shortwave infrared 
(SWIR). Key spectral features in these regions allow identification of various materials using 
laboratory and field spectroscopy, including minerals, vegetation, man-made materials, snow 
and ice and water (Clark et al.,2003, Salisbury et al., 1991, Kruse 2012). Primary restrahlen 
of features are observed in silicates carbonates, and other minerals in the spectral range of 
8-14μm (LWIR) wavelength range (Farmer, 1974; Salisbury et al., 1991).The mineral 
compositional differences and variability are correlated with small differences in absorption 
band position and shape in VNIR-SWIR (Gaffey, 1986; Salisbury et al., 1991; Duke, 1994; 
Cloutis et al.,2006, Kruse, 2012). 
 

Study area and image data  
The lithology of the part of Chitradurga schist belt 13036’25’’N, 760 35’49’’E (Fig 1) belongs 
to both Bababudan and Chitradurga groups. The Bababudan group of rocks represented by 
metabasalt-quartzite formations and NNW trending synclinal Kibbanahalli BIF formation 
extending from east of Kandikere up to Banasandra, wrapping around the CN Halli gneiss 
and joining the main CN Halli belt near Dodguni (Radhakrishna, 1967; Srinivasan and 
Sreenivas, 1975; Seshadri et al., 1981; Ramakrishnan and Vaidynadhan, 2008). Chitradurga 
Group of rocks covers most of the CN Halli schist belt, represented by quartz-sericite-chlorite 
schist, quartzite, carbonates, Mn formations and BIF. The Chitradurga group unconformally 
overlies Bababudan group (Devaraju and Anantha Murthy, 1976, 1977). EO-1 Hyperion data 
covering Chikkanayakanahalli area, acquired 14 April 2011. The image covers the spectral 
range of 0.4 to 2.5μm at 10nm bandwidth with 220 unique wavelength bands. The Level 1 
radiometric (L1R) product is used in the research has 242bands. However, only 155 of them 
are calibrated from visible-to-infrared (VNIR) and short wave-infrared (SWIR) regions (Table 
1). The scene characteristics of the Hyperion image of part Chitradurga Schist belt area. The 
Hyperion sensor has a nominal ground spatial resolution of 30m and 16bit radiometric 
resolution (EO-1 User Guide, 2003) 
 

Materials and methods 
The methodology includes preprocessing of Hyperion image, Dimensionality reduction and 
Image classification (Spectral Angel Mapper). An overview of the methodology adopted for 
the present study is presented as a flowchart in Fig 2. Preprocessing of Hyperion image is 
essential. The data is available in raw form and most the data sets are not geometrically 
calibrated. Error can occur in the datasets due to spectrometer material of the 242 a subset 
of 155 bands, spectrally subsetted from the hyperion data set. 
Another common error to pushbroom sensors is vertical striping, which can be removed by 
identifying the bad bands and applying average values of neighboring pixels (Goodenough 
et al., 2003, Research System Inc.2003, Darmawan 2006, Hosseinjani et al., 2013). The 
Hyperion Image of the Study area is affected by the atmospheric error due to its time of 
acquisition. Thus atmospheric corrections of Hyperion images require reduction of 
atmospheric influence on the reflectance and filter out the target reflectance cleanly from 
mixed signal. Using FLAASH wavelength ranging through visible infrared and shortwave 
infrared can be corrected for atmospheric errors. The different parameters which are applied 
for running the FLAASH model on Hyperion image (listed out in Table 2). After the 
atmospheric correction the reflectance value of several bands of Hyperion data is found to 
be too low. The resulting value is set to be zero by the model. Therefore 155 bands are left 
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for further processing. To remove the smile seen in individual bands of Hyperion image and 
it is transformed into Minimum Noise Fraction (MNF) (Green et al.1998). The most useful 
information is obtained in the first few MNF bands and subsequent bands which have higher 
noises. MNF bands below one eigenvalue are not carrying useful information and contain 
noise. MNF with band value more than one is selected for removing the noise. Hence only 
15 MNF –bands are maintained and retransformed to reflection data. The resulting 
reflectance dataset contains 155 
bands. The combination of MNF Pixel Purity Index (PPI) and N-dimensionality visualizer the 
spectral endmembers are extracted (Envi user guide 2003, Boardman 1993; Boardman et 
al., 1995). The Pixel purity index is applied to 15 MNF-bands with the image of 10000 
iteration factors and 2.5 thresholds, which allows in determining the pixels with high digital 
numbers called skewers (Broadman and Kruse, 1995). The pixel values are selected from 
the region of interest (ROI) of the area which are geologically familiar and compute for n-
dimensional visualization (Hosseinjani et al., 2013). The spectra collected could be attributed 
to mineral zones; these spectra are matched with the USGS spectral library with a score of 
spectral analyst tool (ENVI user guide 2003, El-Nahry and Altenabas 2006). Based on the 
values of spectral analyst tool the Spectral Angle Mapper classification is made. The 
algorithm can be used for the identification of unknown spectra based on a measure 
similarity with one or more known spectra. SAM decides, spectral similarity by calculating 
spectral angle between two spectral vectors which have the same origin.  
 

Result and discussion 
In geological mapping, based on the spectral signatures, allows direct identification of iron 
minerals such as Hematite, goethite and jarosite in Visible-Near infrared (VNIR) and clay, 
carbonates, mica, sulfates and other minerals in Shortwave infrared(SWIR) and silicates and 
carbonates in long wave infrared (LWIR). The unique ability of hyperspectral remote sensing 
is to generate a spatial distribution of specific minerals. Mineral assemblages and mineral 
variability on the surface of the Earth makes it as an Ultimate tool for enhanced mapping. By 
spectral subsetting of Hyperion data we get 155 bands and vertical column is corrected. The 
FLAASH Model gives the atmospheric corrected image in which DN values are 
corrected to reflectance value thus the spectral signature appear perfectly. The Minimum 
Noise 
Fraction transform computes the normalized linear combinations of the original bars which 
maximize the ratio of the signal w.r.t. noise. The PPI proceeds by generating a large number 
of random N-dimensional vectors which are called skewers. Every data point is projected on 
each skewer along the direction with which it is pointed out. The data points which 
correspond to extreme values in the direction of skewer are identified and placed in a list. 
The pixel purity index image is determined by the MNF image for Hyperion dataset. The 
number 10000 iterations are chosen as 250 iterations per block, given a threshold of 3 and it 
is chosen for further selection of the region of interest (ROIs). Endmembers are selected for 
Spectral Angle Mapping. In the study area various endmembers are chosen with respect to 
their relevance. In the N-Dimensional visualizer the demarcated endmembers are separated 
in the region of interests and are saved. The endmember which are collected from ROI are 
matched with Standard USGS library in Spatial Analyst tool and with background of the 
study area and the spatial analyst score 
are used for Spectral Angle Mapping (SAM) (Fig:2).  
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Conclusion 
The results at the Chitradurga schist belt establish the data from the Hyperion data can be 
used to produce useful geologic (mineralogical) information. Hyperion data provides the 
ability to remotely map basic surface mineralogy. Minerals abundance mapping include 
calcite (7.40%), Iron Oxides (2.83%), Chromite (8.82%) and Chlorite (5.80%). These case 
histories demonstrate the analysis methodologies and level of information available from the 
Hyperion data. They also demonstrate the viability of Hyperion as a means of extending 
Hyperspectral mineral mapping.  
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Data Attribute Attribute Value Data Attribute Attribute Value 
Entity ID EO11440512011104110PZ Scene Start Time 04:56:48 
Acquisition Date 14/04/2011 Scene Stop Time 05:01:07 
Site coordinates 13 N 76.5 E Date Entered 14/04/2011 
NW Corner 13.535855N, 76.575253E Target Path 144 
NE Corner 13.521625N, 76.643769E Target Row 51 
SW Corner 12.627469N, 76.378750E Sun Azimuth 153.720703 
SE Corner 12.613264N,76.447028N Sun Elevation 0.831kms 
Cloud Cover 0 to 9% Cloud Cover Satellite Inclination 98.18 
Receiving Station SGS Look Angle 3.32 

 
 
 
 
 
 

 


